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Abstract

Multimedia applications have timing requirements that cannot generally be satisfied using time-sharing
scheduling algorithms and system structures. To effectively support these types of programs, operating
systems must support processor capacity reservation. A capacity reservation and enforcement mechanism
isolates programs from the timing and execution characteristics of other programs in the same way that
a memory protection system isolates programs from memory access by other programs. In this paper,
we characterize the timing requirements and processor capacity reservation requirements for multimedia
applications, we describe a scheduling framework to support reservation and admission control, and
we introduce a novel reserve abstraction, specifically designed for the microkemel architecture, for
controlling processor usage.
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1. Introduction

Many personal workstations provide audio and video devices for multimedia applications. To support
these applications, the operating system must be responsive to the strenuous timing constraints of real-time
digital audio and video data streams (continuous media [21). Unfortunately, the time-sharing scheduling
policy found in most workstation operating systems is an historical artifact from a time when many users
with interactive and batch computing requirements shared a single processor A personal workstation,
which is typically dedicated to a single user, should schedule processes based on the user's focus or based

on the preferences of the user. This user-centric approach to scheduling is even more important if the
personal workstation supports real-time multimedia computing.

We have designed a processor capacity reservation mechanism which allows the user to control
the allocation of processor cycles among programs. Our design treats continuous media applications
and non-time-constrained applications in an integrated way. Reservations are requested at the time
each application is created, and once a reservation has been granted by the scheduler, the program is
assured of the availabilityof processor capacity (henceforth just "capacity"). We use a kernel abstraction
called a reserve which keeps track of the reservation and measures the processor usage of each program.
Microkernel operating systems employ separately scheduled servers to provide various system services
(4], and consequently, the true processor usage of a program includes the processor usage of the servers
invoked by that program. Unfortunately, some microkemels measure user time and system time for
each process, thus the usage statistics do not reflect the true computation time of programs. Our reserve
mechanism accurately accounts for computation time done in one program on behalf of another and
charges that time against the appropriate reserve.

Operating system support for digital audio and video typically includes only primitive scheduling
support for continuous media programs. This support usually comes in the form of a fixed-priority
extension to a time-sharing scheduler. Continuous media applications can then run at the highest priority
without interference from non-time-constrained applications. However, such an arrangement does not
protect high-priority applications from interference from interrupt processing. Additionally, it can be
difficult to schedule two or more continuous media applications using only a priority assignment, even
if their total average utilization does not saturate the processor If two programs happen to require the
processor at the same time in order to meet their timing constraints, the contention may cause both of them
to miss their deadlines. In such a case where executing two programs is infeasible, the system should
recognize this before attempting to schedule both programs. Having programs make reservations for
their computational requirements allows the scheduler to decide whether a new reservation request can
be accepted. A program which has its reservation request refused is free to modify its timing constraints
and request service at a lower rate.

The possibility of processor overload presents additional problems for continuous media operating
systems. Simple fixed-priority scheduling does not help to detect or prevent potential overload conditions.
Attempting to execute two continuous media applications which overload the system results in neither
of the programs being able to meet its timing constraints. Under a reservation scheme, the system would
admit only one of the programs, and the other program may change its timing parameters and request ,o -o

service under the new parameters. A dynamic reservation strategy prevents overload by refusing to admit -

new programs which would result in an overloaded processor. CRAM

In discrete resource allocation (such as memory allocation), a request for more of a resource than is TAB

currently available fails, and the program that made the request must either do without the resource or ,Otr'Ced

request less of the resource. In processor scheduling, a program that requires more of the processor than cIiof

is available takes a little bit of the processor from each of the other programs. As long as the established
programs can afford to give up the extra processing time, this policy works, but continuous media bution I

applications have certain minimum resource requirements below which it does not make sense to run the
Availebility
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program. The solution is a capacity reservation strategy which can reserve processor time, measure usage,
and verify that the reservations are not exceeded. Programs which require more processing power than
is available can be accommodated only after they reduce their computational requirements. Processor
capacity reservation should be more like discrete resource allocation.

In the rest of the paper, we describe our reservation strategy and discuss related work. We give
the requirements for a reservation strategy in Section 2, and in Section 3 we explore two approaches to
scheduling with reservations, examining the advantages and disadvantages of each. Section 4 discusses
implementation issues, and Section 5 describes the new reserve abstraction and discusses usage measure-
ment and reservation enforcement. In Section 6, we discuss related work, and we make a few concluding
observations in Section 7.

2. Requirements for a reservation strategy
The problems described in the previous section motivate the design of a processor capacity reservation

strategy for continuous media operating systems. The reservation strategy must

1. provide some means for application programs to specify their processor requirements,

2. accurately measure the computation time consumed by each program,

3. evaluate the processor requirement of new programs decide whether to admit them or not, and

4. be able to control the execution of programs which attempt to ovemm their capacity reservation.

The first requirement depends on a consistent scheduling model that can accommodate different kinds
of program timing requirements. For example, an audio application might be scheduled every 50 ms to
generate an audio buffer. Many programs have no time constraints at all and run as fast as possible for as
long as the computation takes. Percentage of the CPU provides a straightforward measure to describe the
processor requirement of both of these kinds of programs. CPU percentage is the CPU time required by a
program during an interval divided by the real time of the interval, and the CPU percentage consumed by
a program over time defines its rate of progress. Periodic programs (programs which execute repeatedly
at a fixed interval) have a natural rate described by their period and the computation time required
during each period, assuming the computation time is fairly constant. When the computation time is not
constant, a conservative worst case estimate reserves the necessary processor time, and the unused time
is available for background processing. Programs that are not periodic have no natural computing rate,
but we can assign them a rate. This rate will determine the duration of time until the program completes,
and the rate must be reserved based on the delay requirements of the program. Figure I(a) illustrates the
computational requirement of a periodic program rp and shows how the period may be split in half, along
with the computation time, to reduce the maximum delay for the smaller computations. A non-periodic
program appears in Figure 1 (b) which shows how the long computation can be executed in periodic bursts.
With this kind of framework, we can use scheduling algorithms which schedule programs according to
their allocated rate.

The second requirement, that the scheduler accurately measure the computation time consumed by
each program, demands precise performance monitoring software which typical operating systems do
not provide. Operating systems usually accumulate usage statistics for each process by sampling during
regular clock interrupts [121, but this information is not very precise over short intervals. Furthermore,
the execution behavior of the monitored program must be independent of the sampling period. A more
precise mechanism would measure durations between context switches and would account for interrupt
processing time and other "system overhead."
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Figure 1: Periodic Framework

Even if the system can accurately measure capacity consumption on a per-process basis, other
problems arise. Usage statistics in traditional operating systems consist of system-level usage time and
user-level time for each process [12). For monolithic operating systems, this approach is sufficient, but
for microkemel systems where operating system services are offered by different user-level servers, the
usage statistics of an activity cannot be found in the usage statistics of a single process. An activity may
request services of several different operating system servers such as a name server, a file server, or an Y/O
server. To maintain an accurate picture of the activity's capacity consumption, the cost of these services
must be charged to the activity itself rather than to the individual servers. Thus capacity reservations
must be associated with reserves which are then used to charge processing time at different processes.
Ideally, reserves would even be associated with incoming network packets so that the receiver of the
packets could be charged for their protocol processing. Otherwise an activity which communicates over
the network could exceed its capacity reservation.

Figure 2 illustrates how to account for computation time in a server. The client C starts with no
charges against its reserve as indicated by the empty oval in the leftmost frame of the figure; the server S
has no reserve of its own. When the client invokes the server, the charge for the invocation, as indicated
by the shaded part of the oval in the next frame, is applied to the reserve, and the reserve is passed to the
server. The server uses the reserve to charge the computation time required for service, and the server
passes the invocation result and the reserve back to the client. The cost of the invocation is applied in
full to the client's reserve.

The third requirement, that the scheduler can evaluate the timing constraints of new programs
against the available capacity, calls for a scheduling framework that translates the processor requirements
specified by individual programs into utilization measures which can be used in an admission control
policy. We shall see that simply summing the individual utilizations of all executing programs will
work under a dynamic priority scheduling discipline, but there are drawbacks to this approach. Another
approach is fixed priority scheduling with an appropriate priority assignment, but this method does not,
in general, allow us to reserve the full 100% of the processor. Figure 3 illustrates the flavor of the two
reservation strategies. Part (a) shows how the processor can be divided into arbitrary size slices where
the sum of the slices is 100%, and part (b) represents a method where reservations must "fit together" in
some way which may not allow 100% of the processor to be reserved.
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Figure 3: Processor Capacity Reservation

The fourth requirement, that the scheduler be able to control the execution of programs which attempt
to overrun their capacity reservation, means that the system must accurately measure the processor usage
of each program and that a mechanism must exist to notify the scheduler when a program exceeds its
computation time for the current period. Whenever the scheduler dispatches a thread, it computes the
maximum duration of time the thread could execute based on its allocation and its usage so far, and it
sets a timer to expire after this duration.

3. Approaches to reservation

A scheduling framework based on rate of program progress provides an effective environment for
implementing processor reservation. We can associate rates with periodic and non-periodic programs as
described in the previous section. The rate of a periodic program can be determined from the period that
the programmer has in mind and the computation time during that period. For non-periodic programs,
the rate arises from delay requirements. In either case. the raue alone does not fully specify the timing
attributes of a program; the computation time and period are essential.

For example, a program could specify that it requires 30% of the processor time to run successfully
on a given machine (processor reservation is unavoidably machine-dependent). But now the question is
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how to measure the 30%. Does the program require 30 milliseconds (ms) out of 100 ms? Or would 300
ms out of 1000 ms be sufficient? These two possibilities are very different: a program that is designed to
output a video stream at 10 frames per second needs 30 ms out of 100 ms, and 300 ms at the end of each
1000 ms period is not sufficient to meet the timing requirements of each 30 ms burst of computation.
On the other hand, a 60-second program compilation that requests 30% of the processor does not need
to have its computation time spread out with 30 ms every 100 ms, incurring much context-switching
overhead; in this case 300 ms every 1000 ms would suffice.

Thus, we have three values which describe the processor requirement for a program, and two of these
are required to specify a processor percentage. Let p be the processor percentage, C be the computation
time, and Tbe the period of real time over which the computation time is to be consumed. Then we have

C

We generally specify processor requirements using p and T since p is such a natural expression of
processor reservation and since we think of most periodic activities in terms of the period T.

The computation time C of a periodic activity is difficult for the programmer to measure accurately,
so our approach is to have the programmer estimate the computation time and then depend on the system
to measure the computation time and provide feedback so that the estimate can be adjusted if necessaty.
For non-periodic activities that are to be limited by a processor percentage, C does not correspond to the
code structure, so specifying p and T defines how far the computation can proceed before consuming its
share of the processor for each interval. This is in contrast to periodic activities which would generally
associate a code block with the computation that is to repeat during each period.

Delay for a non-periodic program which executes at a given rate can be calculated from the rate of
execution and the total execution time. A program that runs at rate p with total computation time (service
time) S will take

S
P

time to complete execution. This equation can also be used to derive a suitable rate given the total
computation time and largest acceptable delay. Using the largest acceptable delay yields the smallest
acceptable rate of execution.

We now consider how to go about scheduling programs assuming we can determine the scheduling
parameters p, C, and T that specify the timing requirements of each program. Fixed priority scheduling
is a practical policy which provides a method of assigning priorities that supports processor reservation
and admission control. Dynamic priority scheduling, such as earliest deadline scheduling, is another
practical method that also supports reservation and admission control. We shall compare the advantages
and disadvantages of these two approaches.

3.1. Admission control under fixed priority scheduling

Using fixed priority scheduling in our framework requires a method of assigning priorities to programs
which ensures that each program will progress at its assigned rate. The rate monotonic (RM) priority
assignment [14] does just that. Under this regime, programs are ordered from highest rate to lowest rate
and then priorities are assigned with the highest priority assigned to the highest rate program and the
lowest priority assigned to the lowest rate program.

The rate monotonic scheduling algorithm was analyzed under simplifying conditions, and the results
of this analysis provide a basis for processor reservation strategies. Liu and Layland [141 made the
following assumptions to enable their analysis:

1. programs are periodic, and the computation during one period must finish by the end of the period
(its deadline) to allow the next computation to start,
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2. the computation time of each program during each period is constant,

3. programs are preemptive with zero context switch time, and

4. programs are independent, i.e. programs do not synchronize or communicate with other programs.

Let n be the number of periodic programs and denote the computation time and period of program i by
Ci and T", respectively. They proved that all of the programs will successfully meet their deadlines and
compute at their associated rates if

s <_ n(21/R - 1)

When n is large, n(21/M - 1) = In2 = .69. This bound is pessimistic: it is possible for programs which
do not satisfy the inequality to successfully meet their deadlines, but we cannot determine this from the
Liu and Layland analysis.

A reservation strategy follows naturally from this analysis. To keep track of the current reservations,
we must remember the rates of the programs which have reserved computation time, and the total
reservation is the sum of these rates. A simple admission control policy is to admit a new program if
the sum its rate and the total previous reservation is less than .69. Such a policy would leave a lot of
"idle" computation time which could not be reserved. One possibility is to use that time for unreserved
background computations. Another possibility is to use the exact analysis of Lehoczky et al. [131 to
determine whether a specific collection of programs can be scheduled successfully, although the exact
analysis is more expensive than the simple, pessimistic analysis above. Lehoczky et al. also gave an
average case analysis showing that on average, task sets can be scheduled up to 88% utilization. So in
most cases, this "idle" computation time is only 10-12% rather than 31%.

3.2. Admission control under dynamic priority scheduling

The earliest deadline (ED) scheduling policy, a dynamic priority policy, is effective for scheduling
periodic programs such as our continuous media programs. We define the deadline of a computation to
be the end of the period in which it started, and the earliest deadline policy chooses, at a given point in
time, the program which has the smallest deadline value. Liu and Layland 141 showed that, under the
same assumptions outlined in the section on rate monotonic scheduling, all programs will successfully
meet their deadlines under earliest deadline scheduling if

ý•l<

The reservation strategy that arises from this analysis is similar to the RM strategy. We record the
reserved rates of programs that have been admitted, and the total reservation is the sum of these rates.
Admission control uses this sum to determine whether adding the rate of the new program would result
in a sum less than 1, and, if so, the program is admitted. If not, the reservation cannot be granted.

3.3. Overload control

The two policies perform differently under overload conditions. A good processor reservation im-
plementation should not allow long-term overload, but because of unpredictable synchronization and
communication, some degree of transient overload is likely to occur. Rate monotonic scheduling, as a
fixed priority policy, maintains relatively stable performance under overload. In particular, the programs
with higher priorities will execute successfully at the expense of the programs with lower priorities which

6



may miss some of their deadlines. As long as the higher priority programs are the "most important," RM
should provide good performance under overload. If a program is identified as "important" but has a
low priority due to loose time constraints, the period may be artificially shortened (e.g. halved) and the•
computation time broken up accordingly so that it gets a higher priority.

The ED algorithm fails under overload. A transient overload will adversely affect all programs, even
the "important" ones, as the algorithm attempts to service the programs in deadline order without regard
to whether the service time could be better spent elsewhere. ED tries to give each program its fair share,
but in the overload, none of the programs get the service they were guaranteed, and all of them suffer.
This is exactly the property of time-sharing algorithms that we are trying to avoid in introducing the
reservation policy. Rather than try to partially satisfy the requirements of all programs, we want to fully
satisfy the requirements of a subset of programs.

3.4. Discussion

We note that both of these analyses depend on restrictive theoretical models which cannot be achieved
in practice. Real programs may not be independent, and they are generally not completely preemptive,
especially if the kernel is non-preemptive. When preemption is allowed, the context switch time has a
cost. Thus, systems will not be able to adhere to the reservations as strictly as the models predict, but
with accurate execution monitoring, the scheduler can detect transient reservation violations and take
corrective action on a fine-grain time scale. Some programming rules, such as "use critical regions
sparingly and make them as short as possible," also help to minimize timing problems.

Earliest deadline scheduling seems preferable to the rate monotonic scheduling since ED allows
the admission control policy to reserve up to 100% of the processor whereas RM can only guarantee
reservations up to 69%. As mentioned previously, the 69% bound for RM is pessimistic, and in most
cases, 88% is a more realistic bound. In fact, the reservation bound of rate monotonic is 100% for the
special case where all periods are harmonic, i.e. each period is an even multiple of every period of smaller
duration. Additionally, an amount of unreserved computation time of perhaps 5-10% may be necessary
to avoid scheduling failures due to inaccuracy in the computation time measurement and enforcement
strategy and due to the effects of critical regions and other synchronization and communication among
programs. So in terms of the reservation bound, the two scheduling algorithms may not be as disparate
as they first appear.

ED and RM differ in a few details of their implementations. In particular, fixed priority scheduling
algorithms usually use a small integer to represent priority. In dynamic priority scheduling, a timestamp
is usually involved in priority decisions; for earliest deadline scheduling, the deadline time is used in
making scheduling decisions. The timestamp takes more space and more time for comparison, and in a
distributed system, there may not be an accurate global clock to support timestamps.

4. Implementation issues

The periodic scheduling framework described in Sections 2 and 3 and the rate monotonic and earliest
deadline scheduling algorithms provide a theoretical basis for a processor reservation strategy, but we
must address many practical details in the actual implementation of processor reservation. Estimating
the computation time of a program 6b one area of difficulty, and program start-up is another problem area.

4.1. Specifying computation time

Computation time plays a major role in the scheduling framework; an accurate estimate of computation
is essential for an accurate measure of computation rate in periodic programs. The other parameters of
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the framework are usually easier to determine. For example, period for continuous media applications is
typically defined by the data type and by the resolution, although the issue of delay arises in choosing a
period.

Unfortunately, the computation time is unlike the period in that the computation time comes out of the
code rather than being designed into the application. As such, the programmer has less control of the exact
length of the computation time except by complicated coding tricks. On the other hand, the programmer
could just write the code and then measure it to try to determine its timing characteristics, perhaps in
terms of a statistical distribution or a worst case measurement. Rather than complicate the programmers
job with all of these details, we propose to use an estimate of the computation time for the purposes of
processor reservation, and then depend on the system to make sure that the program does not overrun
the estimate. This is in contrast to the approach used in many real-time systems where worst case timing
measurements are required to statically determine the scheduling properties of the system. Our approach
puts the job of computation time measurement and control on the system instead of on the programmer,
and then as the programmer gains more experience with the timing characteristics of his program, he will
be in a position to make better estimates. One can develop a program and iteratively arrive at a good
estimate without interfering with previously established programs with processor reservations.

The philosophy of this approach is similar to that of the early virtual memory systems where the
operating system first provided memory protection and automatic memory management. These features
made it possible to write programs which were insulated from other programs, and they obviated the
need for ad hoc memory management schemes for each new application. We seek to protect programs
from the timing effects of other programs and to abstract away some of the details of timing in much the
same way as automatic memory systems protect and manage memory.

In contrast to periodic programs, we note that non-periodic programs have no predetermined units of
computation time, and consequently, there is no need to find computation time estimates. The computation
time can be broken up by the enforcement mechanism as necessary to maintain the desired computation
rate of the program.

4.2. Specifying target rate

The target rate is the computation rate at which the program is intended to execute. The specification
of rate, as described in Section 3, consists of two of the three parameters: rate, computation time, and
period. Short-term, target rate violations may orrur due. for example, to critical regions which cannot
be preempted and which therefore cause a computation to overrun its processor allocation for a period.
Critical regions which are large with respect to the computation time will tend to exacerbate this problem,
but as long as critical region length is minimized, the target rate can be accurately enforced.

Computing rates are generally not set in stone. Continuous media applications are typically designed
to run at various rates. A video application may process 30 frames/sec or just 10 frames/sec; an audio
application may support 44k samples/sec or just 8k samples/sec. Even if the processing rate of a program
is fixed, the decomposition of rate into computation time and period depends on the amount of delay the
that can be tolerated.

In Section 1 we divided continuous media programs into two types: periodic and non-periodic. We
further subdivide periodic programs as follows.

1. Fixed basic computation time - These programs have a basic computation, such as "process a
fixed-size buffer of audio samples" or "process a video frame" which are atomic and cannot easily
be divided. The total computation time for a period can be a multiple of this basic computation
time.

2. Tunable computation time - These programs have a basic computation, the duration of which can
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be tuned. By "tuned" we mean that the duration can be adjusted, but adjustments should be rare and
the duration should be constant between adjustments. Examples might be "process a variable-size
buffer of audio samples" or "process a video frame of adjustable resolution."

These two kinds of periodic program structure give us two possibilities for automatic adjustment
by the scheduler, fixed-period rate adjustment and fixed-rate period adjustment. We will find that both
automatic adjustment techniques can be used with non-periodic programs since they have a more flexible
structure than periodic programs.

Fixed-period rate adjustment implies that the period remains constant while the rate is changed, and
this requires a change in the processor reservation. If the rate is increased, a new reservation is required
at the higher level. If the rate is decreased, the reservation should also decrease to make the additional
capacity available to other applications. The scheduler cannot arbitrarily change the rate, however, since
the periodic computation of a program may be indivisible, making reduction of the rate impossible.
Also, when increasing the rate, it may not be possible to set the computation time at an arbitrary value.
Computing one and a half video frames during each period may be difficult if the code structure is set up
for one frame per period or if the timing constraints dictate one frame per period. For the adjustment to
be automatic, periodic programs must have a basic computation which is made known to the scheduler,
the scheduler can then set the computation time and period to a multiple of that basic computation and
the associated period.

Non-periodic programs, since they do not have this additional periodic structure, arm handled by
arbitrarily setting the computation time and period to yield the intended rate. The program can be
interrupted at will, and this makes rate adjustment much easier than in the case of periodic programs.

Each program, periodic or non-periodic, specifies a range of computation rates that suit the application
as well as a target rate which is the preferred value. The scheduler attempts to execute the program at
the target rate and then decreases the target or increases the rate as the load on the system allows. In
any case, a program which has begun execution by successfully reserving at least its minimum rate will
always be guaranteed that the reservation will not fall below the minimum.

Fixed-rate period adjustment, as the name implies, involves holding the rate constant while changing
the period to achieve better performance. When the rate is fixed, a change in computation time must
accompany a change in period. There are two reasons for changing the period of a program. One reason
to change the period is to make scheduling easier. For example, suppose we double the period and
double the computation time of a program, leaving the rate the same. We must complete twice as much
processing in each double length period, but we are free to do that processing at any time during the
double length period. This is in contrast to the case of the single length period where the computation
must be split o-ver two of the single length periods. Increasing (or decreasing) the period can also bring
the period into a harmonic relationship with the other periods in the program mix; harmonic periods
are generally easier to schedule than non-harmonic periods (see Section 3). One effect of doubling the
period in this way is that delay for the computation may be increased. For example, the double length
computation may not execute until the very end of the double length period which means that the first
part of the computation finishes much later than in the single length case.

Another reason to change the period is related to the delay. The scheduler can achieve lower delay for
subparts of the computation time by reducing the period and splittingup the computation time accordingly.
For example, suppose we have a program which generates and transmits two audio packets during its
computation time; it may be that both packets are transmitted at the very end of the period, and the delay
is on the order of the length of the period. We can cut the maximum delay for each packet roughly in
half by halving the computation time and halving the period. Then a packet leaves the program after half
as much time. Neither of these cases of fixed-rate period adjustment involves a change in the processor
reservatioti. Both involve adjustments of timing parameters which are local to the program.

Specifying a range of acceptable delay enables the scheduler to perform automatic fixed-rate period
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adjustment. The range includes a minimum delay and a maximum acceptable delay along with a target
delay which serves as the starting point for the scheduler. With this information, the scheduler can
increase the period to ease scheduling as long as the delay does not become too large. The scheduler can
also decrease the peied to get lower latency when the load is light.

We note that - .nore complicated interface between the application and the system would allow for
more detailed ..4gotiation of program structure and timing constraints, but we defer the detailed design
and implementation of such an interface.

4.3. Program start-up

The initial start-up phase of continuous media programs pose special problems for the reservation strategy.
After a target rae has been reserved and the computation time and period have been fixed, the program
begins execution. But since the computation time is only an estimate, there is a chance that the program
requires more time than has been reserved. In this case, the enforcement mechanism will limit the
program to the reserved rate, and the program will not be able to meet all of its deadlines. This is a
problem only during the initial development phase of the application. After the programmer has more
experience with the timing constraints of the application and produces better estimates, the start-up phase
becomes smooth.

Another problem during start-up occurs when the system is loaded and reservations become tight. If
the target rate cannot be supported with the other reservations, the scheduler must scale down the rate,
possibly to the minimum. The problem is finding a rate that satisfies the constraints imposed by the basic
computation time and that is larger than the minimum rate. Thus, the overhead at creation time may be
larger with heavier load.

5. Reservation enforcement and reserves

Our reservation scheme depends on an enforcement mechanism to make sure that programs do not exceed
their processor reservations. The main goal is to ensure short-term adherence to the reservation with
the realization that perfect enforcement is impossible due to synchronization and communication among
programs. We also require that the computation time of operating system services -vided by user-level
servers in a microkemel architecture be accounted for and included in the reservation consumption.

5.1. Measurerent and control accuracy

Our enforcement mechanism monitors processor usage by measuring the duration of time each program
is executing on the processor, and it charges this computation time against the reserve associated with the
program. The reserve contains the duration of computation time accumulated in the current period, and
the scheduler puts the program in a time-sharing mode when its reservation has been consumed. Programs
which have not yet consumed their reservation take precedence over programs in time-sharing mode, but
if there is unreserved processor time available, programs in time-sharing mode can take advantage of the
extra processor time. Even though the timestamp monitoring method yields an accurate measure of the
processor usage, it is not always possible for the scheduler to take this action at an arbitrary point in time.
For example, if a computation is in the (non-preemptive) kernel or in a critical region when it overruns
its reservation, it cannot be summarily truncated, although the scheduler can easily penalize the program
in its next period based on the duration of the violation.

Other operating systems (121 use sampling methods to measure the processor time consumed by
different programs. Sampling periods are typically on the order of 10 ms [121, so the accuracy of the
measurement is low. The coarse grain of such built-in performance measurement mechanisms yields
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coarse grain control of the computation, and represents a "best effort" kind of system design. The
ubiquitous multi-level feedback queue found in many time-sharing systems uses coarse grain feedback
to adjust priorities [12]. The Fair Share Scheduler (FSS) [7] extends this model with reservations in
the same spirit as ours except that FSS is a best-effort scheduler which does not accurately enforce
its reservations. FSS reacts dynamically to conditions and uses simple heuristics to try to balance the
processor usage over the long term, but it allows unstable short-term behavior which we desire to avoid
in our resernation and enforcement scheme.

Although our scheme is intended to be accurate, we do not require that program usage characteristics
be consistent over different executions. This is in contrast to the approachi taken in Cal [Il l ] where many
design decisions were influenced by the requirement that program execution should cost the same every
time. This approach, as noted by Lampson and Sturgis, leads to much larger overhead charges. For
example, a program that requires a particular text page cannot use a copy that was paged in for another
program; it must pay the cost of a page fault itself. Otherwise, its total cost would be different for
different executions depending on how many pages were already available in memory.

5.2. Microkernel accounting

In many operating systems, the processor usage for each process is recorded in a per process logical
clock, and the logical clock is usually divided between user time and system time. The combination
of these two values is an accurate long-term measure of the computation time used by the process. In
a monolithic system, this is the end of the story, but in a multi-threaded microkemel architecture, per
thread user and system times are meaningless. If a thread invokes vmrius user-level servers for operating
system services, the computation time consumed by the overall activity is not reflected in the user and
system time of the single client thread. The computation time for that activity has been charged to the
client thread and to the server threads as well. Thus, we require an accounting mechanism that accounts
for the computation time of an activity being spread over a collection of threads.

Figure 4 illustrates the difference between accounting in monolithic operating systems and the
accounting we require for microkemels. Part (a) shows a program in a monolithic system which does
some processing of its own and makes two system calls. The arrows represent the control paths, and
each !h.bel represents the computation time required in the associated control path. In this case, the total
usage of the program is P = A + 8 + C + D + E and this time is divided into a user time of Pv = A + C + E
and a system time of Ps = B + D.

Part (b) of Figure 4 illustrates the control path for a similar program in a microkemel where the
services represented by B and D are performed by separate servers. The B* and B** labels correspond to
the computation time for the control necessary to issue the server requests, and likewise for D" and D".
In the monolithic system accounting scheme, the total program usage is measured by the system to be
P = A + B" + C + D" + E where the user usage is Pu = A + C + E and the system usage is Ps = 8" + D*.
The actual service time is charged to the servers Sl and 52 and is never accounted for in the client's
usage measurements. The same control path measured by our microkemel accounting scheme finds
P = A + B + B" + B" + C + D + D* + D"° + E, and this is the accurate measure of processor usage for
program P.

Our reserve abstraction serves the purpose of accurately accounting for an activity which invokes
user-level services offered by the operating system. Reserves are associated with processor reservations
and serve the dual purpose of organizing the reservation parameters and facilitating the enforcement of
reservations by measuring usage against the reservation. Each thread has an associated reserve to which
computation time is charged. One or more threads may charge their computation time to the same reserve.
The most useful configuration is to associate a reserve, along with its processor reservation, with each
"client" thread in the system. As this client invokes operations on various servers, the IPC mechanism
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Figure 4: Microkemel Accounting

forwards the client's reserve to be used by the server thread to charge its computation time on behalf of
the client. The result is that an accurate accounting is made of the resources consumed throughout the
system by the client thread.

In addition to reserves, we allow threads to run unreserved in time-sharing mode. This makes it
possible to use the unreserved capacity or unused reservations for time-sharing or background processing.

6. Related work and future directions

Many researchers consider resource reservation desirable if not absolutely necessary for continuous media
operating systems. Hentwich (81 gives an argument for resource reservation and careful scheduling in
these systems. Rangan and Vin [16] describe a file system with an admission control algorithm that is
designed to support the real-time constraintsof requests. Anderson etal. [2] give additional arguments for
introducing more sophisticated timing and scheduling features into continuous media operating systems,
and their DASH system design supports reservation and uses earliest deadline scheduling for real-time
traffic. The authors use earliest deadline because it is optimal in the sense that if a collection of tasks with
deadlines can be scheduled by any algorithm, it can be scheduled by the earliest deadline algorithm. They
do not explicitly describe how the reservation scheme works or why earliest deadline is well suited to
reservation strategies. We demonstrate why rate monotonic scheduling and earliest deadline scheduling
are suitable for processor reservation, and we compare these two approaches. In addition, we explain how
reservations can be enforced and how non-real-time programs can be integrated with real-time programs
in the scheduling framework.

Govindan and Anderson [5] propose deadline/workahead scheduling and indicate that this method
can be used for reservation systems or for systems without reservations. Their reservation method is based
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on earliest deadline scheduling as in the DASH system. Other work, particularly work related to network
communication, relies on reservation in network nodes (gateways and hosts) to support bandwidth
reservation and rate-base" protocols [1, 3]. Our work provides a basis for software implementation of
these kinds of protocols.

"Fair share" schedulers [7, 9, 181 ensure that users who pay more for the compute time actually get
better service than others who pay less. The scheduler reserves capacity for each user or group of users
and uses usage measurements to try to match usage with reservation in the long term. This work is similar
in spirit to ours, but their reservations are statically defined by system administrators, and none of these
schedulers provides accurate short-term reservation enforcement.

Lampson proposed a fixed time scheduling approach [10] for scheduling periodic processes and
conjectured that a suitable analysis would predict the performance characteristics of processes. Our
strategy uses Liu and Layland's results for periodic processes along with a reservation enforcement
mechanism to implement predictable service for periodic processes.

Performance measurement and accounting techniques have a long history in computer systems [15].
Most systems use sampling techniques or complete traces. Our approach is to use a short-term trace
where we measure the duration of processor time each program gets, but we summarize this information
in an accumulator for each program rather than keep the detailed trace information around. We get the
information we need without retaining the detailed log, and this gives us a better measure than sampling
techniques which depend on the law of large numbers for accuracy. Self-tuning mechanisms have been
proposed and implemented for time-sharing systems. The idea is to keep load under control by rejecting
new logins when the load is above a certain level [17].

Harter and Geihs describe an accounting strategy for distributed systems in which accounts are known
throughout the system, and clients can charge services at various nodes to their accounts (6]. This is
similar to our microkernel accounting strategy in that our reserves can be passed around the system.
Our reservation strategy requires additional accuracy and control to be incorporated into our accounting
scheme.

Our accounting mechanism extends easily to the distributed environment where servers can charge
their service time to reserves associated with remote clients, although distributed processor capacity
reservation requires a protocol to reserve resources at various nodes in the network. We plan to explore
these issues in future work, after completion of our prototype uniprocessor implementation.

7. Conclusion

In this paper, we have motivated the design of a processor reservation strategy in the context of a
continuous media operating system. Our scheduling framework, based on computation rates expressed
as computation time per duration of time, provides an effective way to specify processor requirements.
Two scheduling algorithms with slightly different properties arm suitable for implementing reservation in
this framework. The design addresses practical issues in implementation of the scheduling framework,
and it depends on a novel reserve abstraction for accurate computation time measurement and reservation
enforcement. This accounting mechanism is well suited to the microkemel architecture; it tracks processor
time used by individual threads which call on user-level servers to perform system services.
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